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ABSTRACT

Model benchmarking allows us to separate uncertainty in model predictions caused by model inputs from

uncertainty due to model structural error. This method is extended with a ‘‘large sample’’ approach (using

data from multiple field sites) to measure prediction uncertainty caused by errors in 1) forcing data, 2) model

parameters, and 3) model structure, and use it to compare the efficiency of soil moisture state and evapo-

transpiration flux predictions made by the four land surface models in phase 2 of the North American Land

Data Assimilation System (NLDAS-2). Parameters dominated uncertainty in soil moisture estimates and

forcing data dominated uncertainty in evapotranspiration estimates; however, the models themselves used

only a fraction of the information available to them. This means that there is significant potential to improve

all three components of NLDAS-2. In particular, continued work toward refining the parameter maps and

lookup tables, the forcing datameasurement and processing, and also the land surfacemodels themselves, has

potential to result in improved estimates of surface mass and energy balances.

1. Introduction

Abramowitz et al. (2008) found that statistical models

outperform physics-based models at estimating land

surface states and fluxes and concluded that land surface

models are not able to fully utilize information in forcing

data. Gong et al. (2013) provided a theoretical expla-

nation for this result and also showed how to measure

both the underutilization of available information by a

particular model as well as the extent to which the

information available from forcing data was unable to

resolve the total uncertainty about the predicted phe-

nomena. That is, they separated uncertainty due to

forcing data from uncertainty due to imperfect models.

Dynamical systems models, however, are composed

of three primary components (Gupta andNearing 2014):

model structures are descriptions of and solvers for hy-

potheses about the governing behavior of a certain class

of dynamical systems, model parameters describe de-

tails of individual members of that class of systems, and

forcing data are measurements of the time-dependent

boundary conditions of each prediction scenario. The

analysis by Gong et al. (2013) did not distinguish be-

tween uncertainties that are due to a misparameterized

model from those due to a misspecified model structure,
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and we propose that this distinction is important for

directing model development and efforts to both quan-

tify and reduce uncertainty.

The problem of segregating these three sources of

uncertainty has been studied extensively (e.g., Keenan

et al. 2012;Montanari andKoutsoyiannis 2012; Schöniger
et al. 2015; Liu and Gupta 2007; Kavetski et al. 2006;

Draper 1995; Oberkampf et al. 2002; Wilby and Harris

2006; Poulin et al. 2011; Clark et al. 2011). Almost

ubiquitously, the methods that have been applied to

this problem are based on the chain rule of probability

theory (Liu and Gupta 2007). These methods ignore

model structural error completely (e.g., Keenan et al.

2012), require sampling a priori distributions over model

structures (e.g., Clark et al. 2011), or rely on distributions

derived from model residuals (e.g., Montanari and

Koutsoyiannis 2012). In all cases, results are conditional

on the proposed model structure(s). Multimodel en-

sembles allow us to assess the sensitivity of predictions

to a choice between different model structures, but they

do not facilitate true uncertainty attribution or parti-

tioning. Specifically, any distribution (prior or posterior)

over potential model parameters and/or structures is

necessarily degenerate (Nearing et al. 2015, manuscript

submitted to Hydrol. Sci. J.), and sampling from or in-

tegrating over such distributions does not facilitate un-

certainty estimates that approach any true value.

The theoretical development by Gong et al. (2013)

fundamentally solved this problem. They first measured

the amount of information contained in the forcing

data—that is, the total amount of information available

for the model to translate into predictions1—and then

showed that this represents an upper bound on the

performance of any model (not just the model being

evaluated). Deviation between a given model’s actual

performance and this upper bound represents un-

certainty due to errors in that model. The upper bound

can, in theory, be estimated using an asymptotically

accurate empirical regression (e.g., Cybenko 1989;

Wand and Jones 1994). That is, estimates and attribu-

tions of uncertainty produced by this method ap-

proach correct values as the amount of evaluation

data increases—something that is not true for any

method that relies on sampling from degenerate dis-

tributions over models.

In this paper, we extend the analysis of information

use efficiency by Gong et al. (2013) to consider model

parameters. We do this by using a ‘‘large sample’’ ap-

proach (Gupta et al. 2014) that requires field data

from a number of sites. Formally, this is an example of

model benchmarking (Abramowitz 2005). A bench-

mark consists of 1) a specific reference value for 2) a

particular performance metric that is computed against

3) a specific dataset. Benchmarks have been used ex-

tensively to test land surface models (e.g., van den

Hurk et al. 2011; Best et al. 2011; Abramowitz 2012;

Best et al. 2015). They allow for direct and consistent

comparisons between different models, and although it

has been argued that they can be developed to highlight

potential model deficiencies (Luo et al. 2012), there is

no systematic method for doing so [see discussion by

Beck et al. (2009)]. What we propose is a systematic

benchmarking strategy that at least lets us evaluate

whether the problems with land surface model pre-

dictions are due primarily to forcings, parameters, or

structures.

We applied the proposed strategy to benchmark the

four land surface models that constitute phase 2 of the

North American Land Data Assimilation System

(NLDAS-2; Xia et al. 2012a,b), which is a continental-

scale ensemble land modeling and data assimilation

system. The structure of the paper is as follows. The

main text describes the application of this theory to

NLDAS-2. Methods are given in section 2 and results in

section 3. Section 4 offers a discussion both about

the strengths and limitations of information-theoretic

benchmarking in general, and also about how the re-

sults can be interpreted in context of our applica-

tion to NLDAS-2. A brief and general theory of

model performance metrics is given in the appendix,

along with an explanation of the basic concept of

information-theoretic benchmarking. The strategy is

general enough to be applicable to any dynamical

systems model.

2. Methods

a. NLDAS-2

The NLDAS-2 produces distributed hydrometeoro-

logical products over the contiguous United States used

primarily for drought assessment and NWP initializa-

tion. NLDAS-2 is the second generation of the NLDAS,

which became operational at the National Centers for

Environmental Protection in 2014. Xia et al. (2012a)

provided extensive details about the NLDAS-2 models,

forcing data, and parameters, and so we will present

only a brief summary here.

1 Contrary to the suggestion by Beven and Young (2013), we use

the term ‘‘prediction’’ to mean a model estimate before it is com-

pared with observation data for some form of hypothesis testing

or model evaluation. This definition is consistent with the ety-

mology of the word and is meaningful in the context of the

scientific method.
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NLDAS-2 runs four land surface models over a North

American domain (258–538N, 1258–678W) at 1/88 resolu-
tion: 1) Noah, 2) Mosaic, 3) the Sacramento Soil Mois-

ture Accounting (SAC-SMA) model, and 4) the

Variable Infiltration Capacity model (VIC). Noah and

Mosaic run at a 15-min time step whereas SAC-SMA

and VIC run at an hourly time step; however, all pro-

duce hourly time-averaged output of soil moisture in

various soil layers and evapotranspiration at the surface.

Mosaic has three soil layers with depths of 10, 30, and

160 cm. Noah uses four soil layers with depths of 10, 30,

60, and 100 cm. SAC-SMA uses conceptual water stor-

age zones that are postprocessed to produce soil mois-

ture values at the depths of the Noah soil layers. VIC

uses a 10-cm surface soil layer and two deeper layers

with variable soil depths. Here we are concerned with

estimating surface and root-zone (top 100 cm) soil

moistures. The former is taken to be the moisture con-

tent of the top 10 cm (top layer of each model), and the

latter as the depth-weighted average over the top 100 cm

of the soil column.

Atmospheric data from theNorthAmericanRegional

Reanalysis (NARR), which is natively at 32-km spatial

resolution and 3-h temporal resolution, is interpolated

to the 15min and 1/88 resolution required by NLDAS-2.

NLDAS-2 forcing also includes several observational

datasets, including a daily gauge-based precipitation,

which is temporally disaggregated to hourly using a

number of different data sources, as well as satellite-

derived shortwave radiation used for bias correction. A

lapse-rate correction between the NARR grid elevation

and the NLDAS grid elevation was also applied to

several NLDAS-2 surface meteorological forcing vari-

ables. NLDAS forcings consist of eight variables: 2-m air

temperature (K), 2-m specific humidity (kg kg21), 10-m

zonal and meridional wind speed (m s21), surface pres-

sure (kPa), hourly integrated precipitation (kgm22),

and incoming longwave and shortwave radiation (Wm22).

All models act only on the total wind speed, and in this

studywe also used only the net radiation (sumof shortwave

and longwave) so that a total of six forcing variables were

considered at each time step.

Parameters used by each model are listed in Table 1.

The vegetation and soil classes are categorical variables

and are therefore unsuitable for using as regressors in

our benchmarks. The vegetation classification indices

were therefore mapped onto a five-dimensional real-

valued parameter set using the University of Maryland

(UMD) classification system (Hansen et al. 2000). These

real-valued vegetation parameters included optimum

transpiration air temperature (called topt in the Noah

model and literature), a radiation stress parameter (rgl),

maximum and minimum stomatal resistances (rsmax

and rsmin), and a parameter used in the calculation of

vapor pressure deficit (hs). Similarly, the soil classifica-

tion indices were mapped, for use in NLDAS-2 models,

to soil hydraulic parameters: porosity, field capacity,

wilting point, a Clapp–Hornberger-type exponent, sat-

urated matric potential, and saturated conductivity.

These mappings from class indices to real-valued

TABLE 1. Parameters used by the NLDAS-2 models.

Parameter Mosaic Noah SAC-SMA VIC

Monthly green vegetation fractiona X X

Snow-free albedoa X

Monthly LAIa X X

Vegetation class X X X X

Soil classb X X X X

Maximum snow albedo X

Max/min green vegetation fraction X

Average soil temperature X

Three-layer porosityc X X

Three-layer soil depths X

Three-layer bulk density X

Three-layer soil density X

Three-layer residual moisture X

Three-layer wilting pointc X X

Three-layer saturated conductivity X

Slope type X

Deep soil temperatured X X

a Linearly interpolated to the time step.
bMapped to soil hydraulic parameters.
c Mosaic uses a different three-layer porosity and wilting point than VIC.
d Noah and VIC use different deep soil temperature values.
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parameters ensured that similar parameter values gen-

erally indicated similar phenomenological behavior. In

addition, certain models use one or two time-dependent

parameters: monthly climatology of greenness fraction,

quarterly albedo climatology, and monthly leaf area

index (LAI). These were each interpolated to the model

time step and so had different values at each time step.

b. Benchmarks

As mentioned in the introduction, a model bench-

mark consists of three components: a particular data-

set, a particular performance metric, and a particular

reference value for that metric. The following subsections

describe these three components of our benchmark anal-

ysis of NLDAS-2.

1) BENCHMARK DATASET

As was done by Kumar et al. (2014) and Xia et al.

(2014), we evaluated the NLDAS-2 models against

quality-controlled hourly soil moisture observations

from the Soil Climate Analysis Network (SCAN). Al-

though there are over 100 operational SCAN sites, we

used only those 49 sites with at least 2 years of complete

hourly data during the period of 2001–11. These sites are

distributed throughout the NLDAS-2 domain (Fig. 1).

The SCAN data have measurement depths of 5, 10, 20.3,

51, and 101.6 cm (2, 4, 8, 20, and 40 in.) and were quality

controlled (Liu et al. 2011) and depth averaged to 10 and

100 cm to match the surface and root-zone depth-

weighted model estimates.

For evapotranspiration (ET), we used level 3 station

data from the AmeriFlux network (Baldocchi et al.

2001). We used only those 50 sites that had at least 4000

time steps of hourly data during the period 2001–11. The

AmeriFlux network was also used by Mo et al. (2011)

and by Xia et al. (2015) for evaluation of the NLDAS-2

models, and a gridded flux dataset from Jung et al.

(2009), based on the same station data, was used by

Peters-Lidard et al. (2011) to assess the impact on ET

estimates of soil moisture data assimilation in the

NLDAS framework.

2) BENCHMARK METRICS AND REFERENCE

VALUES

Nearing and Gupta (2015) provide a brief overview of

the theory of model performance metrics, and the gen-

eral formula for a performance metric is given in the

appendix. All performance metrics measure some as-

pect (either quantity or quality) of the information

content of model predictions, and the metric that we

propose here uses this fact explicitly.

The basic strategy for measuring uncertainty due to

model errors is to first measure the amount of in-

formation available in model inputs (forcing data and

FIG. 1. Location of the SCAN andAmeriFlux stations used in this study. Each SCAN station contributed 2 years

of hourly measurements (N = 17 520) and each AmeriFlux station contributed 4000 hourly measurements to the

training of the model regressions.
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parameters) and then to subtract the information that is

contained in model predictions. The latter is always less

than the former since themodel is never perfect, and this

difference measures uncertainty (i.e., lack of complete

information) that is due to model error (Nearing and

Gupta 2015). This requires that wemeasure information

(and uncertainty) using a metric that behaves so that the

total quantity of information available from two in-

dependent sources is the sum of the information avail-

able from either source. The only type of metric that

meets this requirement are those based on Shannon-

type entropy (Shannon 1948), so we used this standard

definition of information and accordingly measure un-

certainty as (conditional) entropy (the appendix con-

tains further explanation).

To segregate the three sources of uncertainty (forc-

ings, parameters, and structures), we require three ref-

erence values. The first is the total entropy of the

benchmark observations, which is notated as H(z),

where z represents observations. Strictly speaking,H(z)

is the amount of uncertainty that one has when drawing

randomly from the available historical record, and this is

equivalent, at least in the context of the benchmark

dataset, to the amount of information necessary to make

accurate and precise predictions of the benchmark ob-

servations. Note that H(z) is calculated using all

benchmark observations at all sites simultaneously,

since the total uncertainty prior to adding any in-

formation from forcing data, parameters, or models

includes no distinction between sites.

The second reference value measures information

about the benchmark observations contained in model

forcing data. This is notated as I(z;u), where I is the

mutual information function (Cover and Thomas 1991,

chapter 2) and u represents the forcing data. Mutual

information is the amount of entropy of either variable

that is resolvable given knowledge of the other variable.

For example,H(z j u) is the entropy (uncertainty) in the

benchmark observations conditional on the forcing data

and is equal to the difference between total prior un-

certainty less the information content of the forcing

data: H(z j u)5H(z)2 I(z;u). This difference, H(z j u),
measures uncertainty that is due to errors or incom-

pleteness in the forcing data.

Our third reference value is the total amount of

information about the benchmark observations that

is contained in the forcing data plus model parame-

ters. This is notated as I(z;u, u), where u represents

model parameters. As discussed in the introduction,

u is what differentiates between applications of a

particular model to different dynamical systems (in

this case, as applied at different SCAN or AmeriFlux

sites), and it is important to understand that I(z; u)

describes the relationship between forcing data and

observations at a particular site, whereas I(z; u, u)

considers how the relationship between model

forcings and benchmark observations varies be-

tween sites, and how much the model parameters can

tell us about this intersite variation. Section 2b(3)

describes how to deal with this subtlety when cal-

culating these reference values; however, for now

the somewhat counterintuitive result is that it is

always the case that I(z; u) is always greater than

I(z; u, u) since no set of model parameters can ever be

expected to fully and accurately describe differences

between field sites.

Finally, the actual benchmark performance metric is

the total information available in model predictions yM

and is notated I(z; yM). Because of the data processing

inequality [see appendix, as well as Gong et al. (2013)],

these four quantities will always obey the following

hierarchy:

H(z)$ I(z; u)$ I(z;u, u)$ I(z; yM) . (1)

Furthermore, since Shannon information is additive, the

differences between each of these ordered quantities

represent the contribution to total uncertainty due to

each model component. This is illustrated in Fig. 2,

which is adapted from Gong et al. (2013) to include

parameters. The total uncertainty in the model pre-

dictions isH(z)2 I(z; yM), and the portions of this total

uncertainty that are due to forcing data, parameters, and

FIG. 2. A conceptual diagram of uncertainty decomposition us-

ing Shannon information. The term H(z) represents the total un-

certainty (entropy) in the benchmark observations, and I(z; u)
represents the amount of information about the benchmark ob-

servations that is available from the forcing data. Uncertainty due

to forcing data is the difference between the total entropy and the

information available in the forcing data. The information in the

parameters plus forcing data is I(z; u, u), and I(z; u, u), I(z; u)

because of errors in the parameters. The term I(z; yM) is the total

information available from the model, and I(z; yM), I(z; u, u)
because ofmodel structural error. This figure is adapted fromGong

et al. (2013).
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model structure are H(z)2 I(z; u), I(z;u)2 I(z;u, u),

and I(z; u, u)2 I(z; yM), respectively.

The above differences that measure uncertainty con-

tributions can be reformulated as efficiency metrics. The

efficiency of the forcing data is simply the fraction of

resolvable entropy:

E
u
5

I(z;u)

H(z)
. (2.1)

The efficiency of the model parameters to interpret in-

formation in forcing data independent of any particular

model structure is

E
u
5
I(z; u,u)

I(z;u)
, (2.2)

and the efficiency of any particular model structure at

interpreting all of the available information (in forcing

data and parameters) is

EM 5
I(z; yM)

I(z;u,u)
. (2.3)

In summary, the benchmark performancemetric that we

use is Shannon’s mutual information function, I(z; yM),

which measures the decrease in entropy (uncertainty)

due to running the model. To decompose prediction

uncertainty into its constituent components due to

forcing data, parameters, and the model structure, we

require three benchmark reference values:H(z), I(z; u),

and I(z;u, u). These reference values represent a series

of decreasing upper bounds on model performance, and

appropriate differences between the performance met-

ric and these reference values partition uncertainties.

Similarly, appropriate ratios, given in Eqs. (2.1)–(2.3),

measure the efficiency of each model component at

utilizing available information.

3) CALCULATING INFORMATION METRICS

Calculating the first reference value,H(z), is relatively

straightforward. There are many ways to numerically

estimate entropy and mutual information (Paninski

2003), and here we used maximum likelihood estima-

tors. A histogram was constructed using all N observa-

tions of a particular quantity (10-cm soilmoisture, 100-cm

soil moisture, or ET from all sites), and the first reference

value was

H(z)52�
B

i51

n
i

N
ln
�n

i

N

�
, (3.1)

where ni is the histogram count for the ith ofB bins. The

histogram bin width determines the effective precision

of the benchmark measurements, and we used a bin

width of 0.01m3m23 (1% volumetric water content) for

soil moisture and 5Wm22 for ET.

Similarly, the benchmark performancemetric I(z; yM)

is also straightforward to calculate. In this case, a joint

histogram was estimated using all observations and

model predictions at all sites, and the joint entropy was

calculated as

H(z, yM)5 �
B

i51
�
B

j51

n
i,j

N
ln

�
n
i,j

N

�
. (3.2)

We used square histogram bins so that the effective

precision of the benchmark measurements and model

predictions was the same, and for convenience we notate

the same number of bins in both dimensions. The en-

tropy of the model predictions was calculated in a way

identical to Eq. (3.1), and mutual information was

I(z; yM)5H(z)1H(yM)2H(z, yM). (3.3)

The other two intermediate reference values, I(z; u) and

I(z;u, u), are more complicated. The forcing data u was

very high dimensional because the system effectively

acts on all past forcing data; therefore, it is impossible

to estimate mutual information using a histogram as

above. To reduce the dimensionality of the problem we

trained a separate regression of the form Ru
i : fu1:t,ig/

fzt,ig (where the curly brackets indicate set notation) for
each individual site where the site is indexed by i. That

is, we used the benchmark observations from a partic-

ular site to train an empirical regression that mapped a

(necessarily truncated) time history of forcing data onto

predictions yut,i 5Ru
i (ut2s:t,i). The reference value was

then estimated as I(z;u)’ I(z; yu), where I(z; yu) was

calculated according to Eqs. (3.1)–(3.3) using all yu data

from all sites simultaneously. Even though a separateRu
i

regression was trained at each site, we did not calculate

site-specific reference values.

As described in the appendix, the Ru
i regressions are

actually kernel density estimators of the conditional

probability density P(zt,i j u1:t,i), and to the extent that

these estimators are asymptotically complete (i.e., they

approach the true functional relationships between u

and z at individual sites in the limit of infinite training

data), I(z; yu) approaches the true benchmark reference

value.

The value I(z; u, u) was estimated in a similar way;

however, to account for the role of parameters in rep-

resenting differences between sites, a single regression

Ru,u : fu1:t, ug/ fztg (where the curly brackets indicate
set notation) was trained using data from all sites si-

multaneously. This regression was used to produce
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estimates yu,ut 5Ru,u(ut2s:t, u) at all sites, and these data

were then used to estimate I(z; yu,u) according to Eqs.

(3.1)–(3.3).

It is important to point out that we did not use a split-

record training/prediction for either the Ru
i regressions

at each site or for the Ru,u regressions trained with data

from all sites simultaneously. This is because our goal

was to measure the amount of information in the re-

gressors (forcing data and parameters), rather than to

develop a model that could be used to make future

predictions. The amount of information in each set of

regressors is determined completely by the injectivity of

the regression mapping. That is, if the functional map-

ping from a particular set of regressors onto benchmark

observations preserves distinctness, then those regres-

sors provide complete information about the diagnostics—

they are able to completely resolve H(z). If there is error

or incompleteness in the forcing data or parameter data,

or if these data are otherwise insufficient to distinguish

between distinct system behavior (i.e., the system is truly

stochastic or it is random up to the limit of the informa-

tion in regressors), then the regressors lack complete

information and therefore contribute to prediction un-

certainty. For this method to work, we must have suffi-

cient data to identify this type of redundancy, and like all

model evaluation exercises, the results are only as repre-

sentative as the evaluation data.

4) TRAINING THE REGRESSIONS

A separate Ru
i regression was trained at each site, so

that in the soil moisture case there were 98 (49 3 2)

separate Ru
i regressions, and in the ET case there were

50 separate Ru
i regressions. In contrast, a single Ru,u

regression was trained separately for each observation

FIG. 3. Median ARD inverse correlation lengths from soil moisture SPGPs trained at each site using only lagged

precipitation data. Inverse correlation lengths indicate a posteriori sensitivity to each dimension of the input data.

The hourly inputs approach a minimum value around 15 lag periods at the 100-cm depth and the daily inputs

approach aminimum at around 25 lag periods at the 10-cm depth. This indicates that these lag periods are generally

sufficient to capture the information from forcing data that is available to the SPGPs. All benchmark SPGPs were

trained with these lag periods.
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type and for each LSM (because the LSMs used differ-

ent parameter sets) on data from all sites so that there

were a total of 12 separate Ru,u regressions (10-cm soil

moisture, 100-cm soil moisture, and ET for each of

Noah, Mosaic, SAC-SMA, and VIC).

We used sparse pseudo-input Gaussian processes

(SPGPs; Snelson and Ghahramani 2006), which are

kernel density emulators of differentiable functions.

SPGPs are computationally efficient and very general in

the class of functions that they can emulate. SPGPs use a

stationary anisotropic squared exponential kernel (see

Rasmussen andWilliams 2006, chapter 4) that we call an

automatic relevance determination (ARD) kernel for

reasons that are described presently. Because the land

surface responds differently during rain events than it

does during dry-down, we trained two separate SPGPs

for each observation variable to act on time steps

1) during and 2) between rain events. Thus, eachRu
i and

Ru,u regression consisted of two separate SPGPs.

Because the NLDAS-2 models effectively act on all

past forcing data, it was necessary for the regressions to

act on lagged forcings. We used hourly lagged forcings

from the 15h previous to time t plus daily averaged (or

aggregated in the case of precipitation) forcings for the

25 days prior to that. These lag periods were chosen

based on an analysis of the sensitivity of the SPGPs. The

anisotropic ARD kernel assigns a separate correlation

length to each input dimension in the set of regressors

(Neal 1993), and the correlation lengths of the ARD

kernel were chosen as the maximum likelihood esti-

mates conditional on the training data. Higher a poste-

riori correlation lengths (lower inverse correlation

lengths) correspond to input dimensions to which the

SPGP is less sensitive, which is why this type of kernel is

sometimes called an ARD kernel—because it provides

native estimates of the relative (nonlinear and non-

parameteric) sensitivity to each regressor. We chose lag

periods for the forcing data that reflect the memory of

the soil moisture at these sites. To do this, we trained

rainy and dry SPGPs at all sites using only precipitation

data over a lag period of 24 h plus 120 days. We then

truncated the lag hourly and daily lag periods where the

mean a posteriori correlation lengths stabilized at a

constant value: 15 hourly lags and 25 daily lags. This is

illustrated in Fig. 3. Since soil moisture is the unique

long-term control on ET, we used the same lag period

for ET as for soil moisture.

Because of the time-lagged regressors, each SPGP for

rainy time steps in the Ru
i regressions acted on 240

forcing inputs, and each SPGP for dry time steps acted

on 239 forcing data inputs (the latter did not consider the

zero rain condition at the current time t). Similarly, the

FIG. 4. Scatterplots of soil moisture observations and estimates made by the NLDAS-2 models (black) and by the benchmarks (gray) in

both soil layers [(a),(b) for surface soil moisture; (c),(d) for top 100-cm soil moisture]. TheRu
i regressions [(a),(c)] act on the forcing data

only and the Ru,u regressions [(b),(d)] act on forcing data plus parameters. The mean anomaly correlations over all sites are listed.
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wet and dry SPGPs that constituted theRu,u regressions

acted on the same forcing data, plus the number pa-

rameter inputs necessary for each model (a separate

Ru,u regression was trained for each of the four NLDAS-

2 land surface models). Each Ru
i regression for SCAN

soil moisture was trained using 2 years of data (17 520

data points), and each Ru,u SCAN regression was

trained on 100 000 data points selected randomly from

the 49 3 17 520 5 858 480 available. The Ru
i ET re-

gressions were trained on 4000 data points, and theRu,u

ET regressions were trained on 100 000 of the 50 3
4000 5 200 000 available. All Ru

i SPGPs used 1000

pseudoinputs [see Snelson and Ghahramani (2006) for

an explanation of pseudoinputs], and all Ru,u SPGPs

used 2000 pseudoinputs.

3. Results

a. Soil moisture

Figure 4 compares the model and benchmark esti-

mates of soil moisture with SCAN observations and also

provides anomaly correlations for the model estimates,

which for Noah were very similar to those presented by

Kumar et al. (2014). The spread of the benchmark es-

timates around the 1:1 line represents uncertainty that

was unresolvable given the input data—this occurred

when we were unable to construct an injective mapping

from inputs to observations. This happened, for exam-

ple, near the high range of the soil moisture observa-

tions, which indicates that the forcing data were not

representative of the largest rainfall events at these

measurements sites. This might be due to localized

precipitation events that are not always captured by the
1/88 forcing data and is an example of the type of lack of

representativeness that is captured by this information

analysis—the forcing data simply lack this type of

information.

It is clear from these scatterplots that the models did

not use all available information in the forcing data. In

concordance with the empirical results of Abramowitz

et al. (2008) and the theory of Gong et al. (2013), the

statistical models here outperformed the physics-based

models. This is not at all surprising considering that the

regressions were trained on the benchmark dataset,

which—to reemphasize—is necessary for this particular

type of analysis. Figure 5 reproduces the conceptual

diagram from Fig. 2 using the data from this study and

directly compares the three benchmark reference values

with the values of benchmark performance metric.

Table 2 lists the fractions of total uncertainty, that is,

H(z)2 I(z; yM), that were due to each model compo-

nent, and Table 3 lists the efficiency metrics calculated

according to Eqs. (2.1)–(2.3).

The total uncertainty in each set of model predictions

was generally about 90% of the total entropy of the

FIG. 4. (Continued)
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benchmark observations (this was similar for all four

land surface models and can be inferred from Fig. 5).

Forcing data accounted for about a quarter of this total

uncertainty related to soil moisture near the surface

(10 cm), and about one-sixth of total uncertainty in the

100-cm observations (Table 2). The difference is ex-

pected since the surface soil moisture responds more

dynamically to the system boundary conditions, and so

errors in measurements of those boundary conditions

will have a larger effect in predicting the near-surface

response.

In all cases except SAC-SMA, parameters accounted

for about half of total uncertainty in both soil layers, but

for SAC-SMA this percentage was higher, at 60% and

70% for the two soil depths, respectively (Table 2).

Similarly, the efficiencies of the different parameter sets

were relatively low—below 45% in all cases and below

30% for SAC-SMA (Table 3). SAC-SMA parameters

are a strict subset of the others, so it is not surprising that

this set contained less information. In general, these

results indicate that the greatest potential for improve-

ment to NLDAS-2 simulations of soil moisture would

come from improving the parameter sets.

Although the total uncertainty in all model pre-

dictions was similar, the model structures themselves

performed very differently. Overall, VIC performed the

worst and was able to use less than a quarter of the in-

formation available to it, while SAC-SMA was able to

use almost half (Table 3). SAC-SMA had less in-

formation to work with (from parameters; Fig. 5), but it

was better at using what it had. The obvious extension

of this analysis would measure which of the parame-

ters that were not used by SAC-SMA are the mostFIG. 5. The fraction of total uncertainty in soil moisture estimates

contributed by each model component. These plots are conceptu-

ally identical to Fig. 2, except that these use real data.

TABLE 2. Fractions of total uncertainty due to forcings, parameters,

and structures.

Soil moisture

ET10 cm 100 cm

Forcings Noah 0.26 0.17 0.69

Mosaic 0.26 0.17 0.69

SAC-SMA 0.26 0.17 0.68

VIC 0.25 0.17 0.68

Parameters Noah 0.53 0.52 0.20

Mosaic 0.54 0.54 0.21

SAC-SMA 0.62 0.70 0.22

VIC 0.51 0.51 0.20

Structures Noah 0.21 0.31 0.10

Mosaic 0.20 0.29 0.11

SAC-SMA 0.12 0.14 0.10

VIC 0.24 0.32 0.11

TABLE 3. Efficiency of forcings, parameters, and structures

according to Eqs. (2.1)–(2.3).

Soil moisture

ET10 cm 100 cm

Forcings 0.77 0.85 0.40

Parameters Noah 0.37 0.45 0.57

Mosaic 0.38 0.45 0.56

SAC-SMA 0.28 0.26 0.53

VIC 0.38 0.45 0.56

Structures Noah 0.33 0.28 0.62

Mosaic 0.40 0.34 0.60

SAC-SMA 0.49 0.44 0.60

VIC 0.22 0.24 0.57
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important, and then determine how SAC-SMA might

consider the processes represented by these missing

parameters. It is interesting to notice that the model

structure that performed the best, SAC-SMA, was an

uncalibrated conceptual model, whereas Noah, Mosaic,

and VIC are ostensibly physics based (and VIC param-

eters were calibrated).

The primary takeaway from these results is that there

is significant room to improve both the NLDAS-2

models and parameter sets, but that the highest

return on investment, in terms of predicting soil mois-

ture, will likely come from looking at the parameters.

This type of information-based analysis could easily be

extended to look at the relative value of individual

parameters.

b. Evapotranspiration

Figure 6 compares the model and benchmark esti-

mates of ET with AmeriFlux observations. Again, the

spread in the benchmark estimates is indicative of sub-

stantial unresolvable uncertainty given the various input

data. Figure 5 again plots the ET reference values and

values of the ET performance metrics. Related to ET,

forcing data accounted for about two-thirds of total

uncertainty in the predictions from all four models

(Table 2). Parameters accounted for about one-fifth of

total uncertainty, and model structures only accounted

for about 10%. In all three cases, the fractions of ET

uncertainty due to different components were essen-

tially the same between the four models. Related to

efficiency, the forcing data were able to resolve less than

half of total uncertainty in the benchmark observations,

and the parameters and structures generally had effi-

ciencies between 50% and 60%, with the efficiencies of

the models being slightly higher (Table 3). Again, the

ET efficiencies were similar among all four models and

their respective parameter sets.

4. Discussion

The purpose of this paper is twofold. First, we want to

demonstrate (and expand) information-theoretic bench-

marking as a way to quantify contributions to uncertainty

in dynamical model predictions without relying on de-

generate priors or on specific model structures. Second,

we used this strategy to measure the potential for im-

proving various aspects of the continental-scale hydro-

logic modeling system, NLDAS-2.

Related to NLDAS-2 specifically, we found significant

potential to improve all parts of the modeling system.

Parameters contributed the most uncertainty to soil

moisture estimates, and forcing data contributed the

majority of uncertainty to evapotranspiration estimates;

however, the models themselves used only a fraction of

FIG. 6. Scatterplots of ET observations and estimates made by the NLDAS-2 models (black) and by the benchmarks (gray). (top) The

Ru
i regressions act on the forcing data only and (bottom) the Ru,u regressions act on forcing data plus parameters. The mean anomaly

correlations over all sites are listed.
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the information that was available to them. Differences

between the soil moisture and ET results and those from

the soil moisture experiments highlight that model ade-

quacy (Gupta et al. 2012) depends very much on the

specific purpose of the model (in this case, the ‘‘purpose’’

indicates what variable we are particularly interested in

predicting with the model). As mentioned above, an in-

formation use efficiency analysis like this one could easily

be extended not only to look at the information content

of individual parameters, but also of individual process

components of a model by using a modular modeling

system (e.g., Clark et al. 2011). We therefore expect

that this study will serve as a foundation for a diagnos-

tic approach to both assessing and improving model

performance—again, in a way that does not rely on sim-

ply comparing a priori models. The ideas presented here

also will guide the development and evaluation of the

next phase of NLDAS, which will be at a finer spatial

scale, and include updated physics in the land surface

models, data assimilation of remotely sensed water

states, improved model parameters, and higher-

quality forcings through improved model forcings.

Related to benchmarking theory in general, there

have recently been a number of large-scale initiatives to

compare, benchmark, and evaluate the land surface

models used for hydrological, ecological, and weather

and climate prediction (e.g., van den Hurk et al. 2011;

Best et al. 2015); however, we argue that those efforts

have not exploited the full power ofmodel benchmarking.

The most exciting aspect of the benchmarking concept

seems to be its ability to help us understand and mea-

sure factors that limit model performance—specifically,

benchmarking’s ability to assign (approximating) upper

bounds on the potential to improve various components

of the modeling system. As we mentioned earlier, es-

sentially all existingmethods for quantifying uncertainty

rely on a priori distributions over model structures, and

because such distributions are necessarily incomplete,

there is no way for such analyses to give approximating

estimates of uncertainty. What we outline here can

provide such estimates. It is often at least theoretically

possible to use regressions that asymptotically approxi-

mate the true relationship between model inputs and

outputs (Cybenko 1989).

The caveat here is that although this type of

benchmarking-based uncertainty analysis solves the pro-

blem of degenerate priors, the problem of finite evaluation

data remains. We can argue that information-theoretic

benchmarking allows us to produce asymptotic esti-

mates of uncertainty, but since we will only ever have

access to a finite number of benchmark observations,

the best we can ever hope to do in terms of uncer-

tainty partitioning (using any available method) is to

estimate uncertainty in the context of whatever data we

have available. We can certainly extrapolate any un-

certainty estimates into the future (e.g., Montanari and

Koutsoyiannis 2012), but there is no guarantee that such

extrapolations will be correct. Information-theoretic

benchmarking does not solve this problem. All model

evaluation exercises necessarily ask the question ‘‘What

information does the model provide about the avail-

able observations?’’ Such is the nature of inductive

reasoning.

Similarly, although it is possible to explicitly con-

sider error in the benchmark observations during un-

certainty partitioning (Nearing and Gupta 2015), any

estimate of this observation error ultimately and neces-

sarily constitutes part of the model that we are evalu-

ating (Nearing et al. 2015, manuscript submitted to

Hydrol. Sci. J.). The only thing that we can ever assess

during any type of model evaluation (in fact, during any

application of the scientific method) is whether a given

model (including all probabilistic components) is able

to reproduce various instrument readings with certain

accuracy and precision. Like any other type of un-

certainty analysis, benchmarking is fully capable of

testing models that do include models of instrument

error and representativeness.

The obvious open question is about how to use this to

fix our models. It seems that the method proposed here

might, at least theoretically, help to address the question

in certain respects. To better understand the relationship

between individual model parameters and model

structures, we could use anRu,u-type regression that acts

only on a single model parameter to measure the

amount of information contained in that parameter, and

then measure the ability of a given model structure to

extract information from that parameter by running the

model many times at all sites using random samples of

the other parameters and calculating something like

EM(ui)5 I[z; yM(u, ui)]/I(z;u, ui). This would tell us

whether a model is making efficient use of a single pa-

rameter, but not whether that parameter itself is a good

representation of differences between any real dynam-

ical systems. It would also be interesting to know

whether the model is most sensitive (in a traditional

sense) to the same parameters that contain the most

information. Additionally, if we had sufficient and ap-

propriate evaluation data, we could use a deconstructed

model or set of models, like what was proposed by Clark

et al. (2015), to measure the ability of any individual

model process representation to use the information

made available to it via other model processes, param-

eter, and boundary conditions.

To summarize, Earth scientists are collecting ever-

increasing amounts of data from a growing number of
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field sites and remote sensing platforms. These data are

typically not cheap, andwe expect that it will be valuable

to understand the extent to which we are able to fully

utilize this investment—that is, by using it to charac-

terize and model biogeophysical relationships. Hydro-

logic prediction in particular seems to be a data-limited

endeavor. Our ability to apply our knowledge of wa-

tershed physics is limited by unresolved heterogeneity in

the systems at different scales (Blöschl and Sivapalan

1995), and we see here that this difficulty manifests in

our data and parameters. Our ability to resolve pre-

diction problems will, to a large extent, be dependent on

our ability to collect andmake use of observational data,

and one part of this puzzle involves understanding the

extents to which 1) our current data are insufficient and

2) our current data are underutilized. Model bench-

marking has the potential to help distinguish these

two issues.
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APPENDIX

A General Description of Model Performance
Metrics

We begin with five things: 1) a (probabilistic) model

M with 2) parameter values u 2 Rdu acts on 3) mea-

surements of time-dependent boundary conditions

ut 2 Rdu to produce 4) time-dependent estimates or

predictions yMt 2 Rdz of phenomena that are observed

by 5) zt 2 Rdz . A deterministic model is simply a delta

distribution; however, even when we use a de-

terministic model, we always treat the answer as a

statistic of some distribution that is typically implied by

some performance metric (Weijs et al. 2010). In-

variably, during model evaluation, the model implies a

distribution over the observation zt that we notate

P(z j yM).

Further, we use the word ‘‘information’’ to refer to the

change in a probability distribution due to conditioning

on a model or data [see discussion by Jaynes (2003), and

also, but somewhat less importantly, by Edwards (1984)].

Since probabilities are multiplicative, the effect that new

information has on our current state of knowledge about

what we expect to observe is given by the ratio

P(z j yM)

P(z)
, (A1)

where P(z) is our prior knowledge about the observa-

tions before running the model. In most cases, P(z) will

be an empirical distribution derived from past observa-

tions of the same phenomenon [see Nearing and Gupta

(2015) for a discussion].

Information is defined by Eq. (A1), and measuring

this information (i.e., collapsing the ratio to a scalar)

requires integrating. The information contributed by a

model to any set of predictions is measured by in-

tegrating this ratio, so that the most general expression

for any measure of the information contained in model

predictions yM about observations z is

E
z

�
f

�
P(z j yM)

P(z)

�	
. (A2)

The integration in the expected value operator is over

the range of possibilities for the value of the observa-

tion. Most standard performance metrics (e.g., bias,

mean-squared error, and correlation coefficient) take

this form [see appendix A of Nearing and Gupta

(2015)]. The f function is essentially a utility function

and can be thought of, in a very informal way, as de-

fining the question that we want to answer about the

observations.

Since yM is a transformation of u1:t and u (via model

M), any information measure where f is monotone and

convex is bounded by (Ziv and Zakai 1973):

E
z

�
f

�
P(z j yM)

P(z)

�	
#E

z

�
f

�
P(z j u,u)

P(z)

�	
. (A3)

Equation (A3) is called the data processing inequality,

and it represents the reference value for our benchmark.

Shannon (1948) showed that the only function f that

results in an additive measure of information that takes

the form of Eq. (A2) is f (�)52logb(�), where b is any

base. As described presently, we require an additive

measure, so the performance metric for our benchmark

takes the form of Eq. (A2) and uses the natural log as the

integrating function. We therefore measure entropy H

and mutual information I in units of nats in the usual

way, as

H(z)5E
z
f2ln[P(z)]g (A4)

and

MARCH 2016 NEAR ING ET AL . 757



I(z; j)5E
zjj

�
2ln

�
P(z j j)
P(z)

�	
, (A5)

respectively, where j is a placeholder for any vari-

able that informs us about the observations (e.g., u,

u, and yM).

Because it is necessary to have a model to translate

the information contained in u and u into information

about the observations z, the challenge in applying

this benchmark is to estimate P(zt j u1:t, u). This condi-

tional probability distribution can be estimated using

some form of kernel density function (Cybenko 1989;

Rasmussen and Williams 2006; Wand and Jones 1994),

which creates a mapping function Ru,u:fu1:t, ug/ fztg,
where the R stands for regression to indicate that this

is fundamentally a generative approach to estimating

probability distributions [see Nearing et al. (2013) for a

discussion] and where the curly brackets indicate set

notation. The regression estimates are yu,ut 2 R
dz . To the

extent that this regression is asymptotically complete

(i.e., it approaches the true functional relationship be-

tween the set fu, ug and z), an approximation of the

right-hand side of Eq. (A3) approaches the benchmark

reference value.
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